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Let G be a graph and d, denote the degree of the vertex v in G. The zeroth-order
general Randi¢ index of a graph is defined as Rg(G) = ZveV(G) dy® where o is an
arbitrary real number. In this paper, we investigate the zeroth-order general Randi¢
index RS(G) of conjugated unicyclic graphs G (i.e., unicyclic graphs with a perfect
matching) and sharp lower and upper bounds are obtained for Rg(G) depending on
« in different intervals.
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1. Introduction

Let G = (V(G), E(G)) denote a graph whose set of vertices and set of
edges are V(G) and E(G), respectively. For any v € V(G), we denote the neigh-
bors of v as N(v). By n(G) and A(G) we denote, respectively, the order and
maximum degree of graph G. The Randi¢ index of G defined in [16] is

RG)= D (dudy)™ ',

uveE(G)

where d, = dg(v) denotes the degree of the vertex v in G. Randi¢ showed that
his index is well correlated with a variety of Physic-Chemical properties of an
alkane. The index R(G) has become one of the most popular molecular descrip-
tors, the interesting reader is referred to [1, 3, 4, 14-17]. The zeroth-order Randi¢

index R%(G) of G defined by Kier and Hall [10] is R%(G) = ZUGV(G) dv_%.
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Pavlovi¢ [14] determined the unique graph with largest value of R%(G). In [6],
Lielal investigated the same problem for the topological index M;(G), also
known as Zagreb index [17], which is defined as Mi(G) = 2 v d,?. Li
and Zheng [13] defined the zeroth-order general Randi¢ index as R, (G) =

2 vev(c) " Li and Zhao [11] characterized the trees with the first three largelst

and smallest zeroth-order general Randi¢ index with o being equal to m, —m, -,
—% where m > 2 is an integer.

In [8], Hu et al. investigated the molecular graphs having the smallest and larg-
est zeroth-order general Randi¢ index. Hua and Deng [9] gave sharp lower and upper
bounds for zeroth-order general Randi¢ index among all unicyclic graphs.

All graphs considered here are both finite and simple. We denote, respec-
tively, by S,, P,, and C, the star, path, and cycle with n vertices.

Let (G1,v1) and (G», vp) be two graphs rooted at v; and v;, respectively,
then G = (G, v1) < (G1, vp) denote the graph obtained by identifying v; with
vy as one common vertex. Let Ui (n) denote the set of all unicyclic graphs of
order n and with k as its length of cycle. By U;(2m, m) we denote the set of con-
jugated unicyclic graphs of order n = 2m in which the length of its unique cycle
is k, where m is the number of matchings in G. For any graph G in Uy (2m, m),
we denote the unique cycle of length k& in G as Cy. Other notations and termi-
nology not defined here will conform to those in [11].

For any graph in Uy(2m,m) with n = 2m = k orn = 2m = k + 1, its
zeroth-order general Randi¢ index can be uniquely determined. So we will always
assume that n = 2m > k + 2 throughout this paper.

In this paper, we investigate the zeroth-order general Randi¢ index for the
conjugated unicyclic graphs (unicyclic graphs having a perfect matching). For
any graph G € Uiz (2m, m), we give sharp lower and upper bounds for RS(G)
depending on « in different intervals.

2.  The zeroth-order general Randi¢ index of conjugated trees

For convenience, we introduce some notations in the following.

Let T(n,m) denote all n-vertex trees with an m-matching. Let n and m
be positive integers such that n > 2m. A tree T%mn, m) is defined as follows:
T%n, m) is obtained from the star Sn—m+1 by attaching a pendent edge to each
of certain m — 1 non-central vertices of S,,_,,+1, then T is a tree with an m —
matching. In particular, when n = 2m, the tree 7°(2m, m) has a perfect match-
ing.

The following two lemmas due to Hou and Li in [7], which will be helpful
to the proofs of our main results.

Lemma 2.1. Let T be a n-vertex tree (n > 3) with a perfect matching, then T has
at least two pendent vertices such that each are adjacent to vertices of degree two.
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Lemma 2.2. Let T be a n-vertex tree (n > 3) with an m — matching where n >
2m, then there is an m — matching M and a pendent vertex v such that M does
not saturate v.

It is easy to get the following trivial results:

When o = 0, Rg(T) = ZUGV(T) dy® = n, where n is the order of the tree T.

When o = 1, RUT) = 2 vev(r) d® = 2m, where m is the number of edges
of the tree T.

So, weneed only to consider the twocasesa € (0, 1) and« € (—o0, 0) | J(1, +00).

For all trees T in T(2m, m) and o € (—o0,0) |J(1, +00), sharp lower and
upper bounds for RS(T ) are obtained in the following theorem.

Theorem 2.3. Let « > 1 or « < 0 and T be any tree in 7 (2m, m) where m > 1,
then 2 + 2m — 2)2* < Rg(T) < m®* + (m — 1)2% + m with left equality holds

if and only if T = P,, and with right equality holds if and only if 7 = 79
2m, m).

Proof. We divide the proof of theorem into two parts.

First, we will show RY(T) < m® + (m — 1)2% 4+ m.

Let T be a tree in 7(2m, m). If T =T°(2m, m), then RY(T) = RY(T°(2m, m)).
Otherwise, let u be a vertex in T such that d(u) = A(T), then d(u) > 2. By
lemma 2.1, there exists a pair of adjacent vertices, say x; and y; in T such that
d(x;) =1 and d(y;) = 2. Let N(y1) — {x1} = {z1}.

Set TW =T — y;z; +uyy, then TV € T(2m, m). Note that

RYTD) — RY(T) = [(dy + D* — d1+ [d%, — (d;; — 1)°]
=a@E ' —p*h,
where d;, — 1 <n<d; <d, <& <d,+ 1.
Then Rg(T(l)) > Rg(T) since @ > 1 or o < O.
Let 7/ = TW —{x1, y1}, then 7" € T(2(m — 1), m —1). Once again by lemma
2.1, there exists a pair of adjacent vertices x, and y, in T’ with d(x;) = 1 and
d(yy) = 2. Let N(y2) — {x2} = {z2}. Set T" = T’ — y2zo + uy;, obviously dy/(u) =
A(T) = A(T'). Similarly, we have RO(T") > RU(T").
Denote 7@ =70 — 222 + uys, then
RUT®) = d¢ +d% + (dy +2)% — (dy + D* + RY(T")
= 142+ (du + 2% — (du + D* + RYUT")
SE142% 4 (dy + 1)* —d® + RYU(T)
= RY(TD).
The inequality (%) holds due to the fact that (d, +2)* — (d, + )* > (d, +
* —d% when o > 1 or o <0 and R2(T”) > RS(T/).
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Repeating the above process in many times, we finally get a sequence of
trees T, 73, ... 7D . such that R%(T) < RUTD) < RU(TP) < ... <
R2(T ) < .... There must exist some positive integer s such that 7¢) = 76+,
and then T® = T%Q2m,m). So RU(T) < RYU(T°(2m,m)) and then RU(T) <
R2(T0(2m, m)) = m* + (m — 1)2% + m with equality holds if and only if T =
7°2m, m).

Second, we will show that Rg(T) >24+ (2m —2)2%.

If T = Py, then R2(T) = Rg(sz). Otherwise, let P, be operated as
above, we have Rg(PZm) < Rg(T(l)) < Rg(T(Z)) < - < Rg(T(l)) < o--,
There must exist some positive integer j > 1 such that T = TU), so RU(T) =
RU(T) > RY(Py,). Therefore, RO(T) > R(Py,) =2+ (2m — 2)2% with equal-
ity holds if and only if T = P,,,. O

When 0 < o < 1, the following theorem follows immediately from the proof
of theorem 2.3.

Theorem 2.4. Let 0 < o < 1 and T be any n-vertex tree in 7' (2m, m) where m > 1,
we have m“+ (m — 1)2* +m < Rg(T) < 24 (2m —2)2% with left equality holds if
and only if 7 = T°(2m, m) and with right equality holds if and only if T = P,,,.

3.  The zeroth-order general Randi¢ index of conjugated unicyclic graphs

In this section, we will give sharp lower and upper bounds for Rg(G)
among all conjugated unicyclic graphs in Uy (2m, m) according to « in different
intervals.

First, we will establish some lemmas which will be useful to the proofs of
our main results.

Lemma 3.1. If 7 is a tree in T (2m + 1, m), then there exists at least one pendent
vertex u in T such that u is adjacent to a vertex of degree two.

Proof. Let T be a tree in T(2m+1, m) and M an maximal matching of 7. There
must exist a vertex, say u, in T such that u is not saturated by M.

Since T € T2m+1,m), then T —{u} € T(2m,m) and M is a perfect match-
ing of T — {u}. By lemma 2.1, there exist two pendent vertices in T — {u} such
that each is adjacent to a vertex of degree two.

Hence T has at least one pendent vertex such that it is adjacent to a vertex
of degree two. This completes the proof. o

Lemma 3.2. Let @« > 1 or @ < 0 and T be any tree in 7T(2m+1, m) (m > 1), then
RU(T) = RY(Py,11) with equality holds if and only if 7 = Py, ;.
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Proof. Let T be a tree in T(2m + 1, m). By lemma 2.2, there exists a pendent
vertex v in T such that v is not saturated by some maximal matching M of T.
Since T € T(2m + 1, m), all vertices in T — {v} are saturated by M. So T — {v} €
T (2m, m). Let N(v) = {w}. Note that R%(T) = RU(T —{v})+d% —(dy—1)*+d% =
Rg(T —{v}) +dS — (dy — 1)* + 1. Hence, from theorem 2.3 it follows that

RYT) = RY(Pyn)+d% — (dy — D +1
= 24 Q2m—2)2"+d$ — (dp — D* +1
>* 2 4+ 2m —1).2%
= R)(Puns1)-

To show (xx) holds, it suffices to prove that d$ — (dy, — 1) +1—2% > 0.

If d, = 2, then d — (dy, — 1)* + 1 — 2% = 0. Otherwise d,, > 3, then
di — (dy — D¥+1-2% = aE® ! — =1y > 0since o > 1 or @ < 0, where
l<n<2<dy—1<& <dy.

Consequently, Rg(T) > R2(P2m+1). It is not difficult to see that the above
equality holds if and only if Rg(T —{v}) = Rg(PZm) and d,, = 2, which implies
that T = Py,;,41 by theorem 2.3. O

Lemma 3.3. Let « > 1 or @« < 0 and T be any tree in T(2m + 1, m)(m > 1), then
Rg(T) < R2(T0(2m+1, m)) with equality holds if and only if 7 = T°Qm+1, m).

Proof Let T be a tree in T2m + 1,m). If T = T°Q2m + 1, m), then Rg(T) =
R2(T0(2m + 1, m)), otherwise by lemma 2.2, there exists a pendent vertex v in T
such that v is not saturated by some maximal matching M of T. Let N(v) = {w}
and d, = A(T). Set T" = T — vw + uv, then T’ — {v} € T(2m, m). By theorem
2.3, we have Rg(T/ —v) < RS(T0(2m, m)). So we have

RNT') = RYT' —v)+d+ (d,+D* —dS
< 1+ RUTQm, m)) + (dy + 1)* — d*
< 1 4+ RUTQ2m, m)) + (m + D% — m®
= 14m*+@m—D2%+m+ m+ D% —m*
= m+D"+m—-1)2%4+m+1
= RUT°Q2m +1,m)).

To show (x % %) holds, it suffices to prove that (d, + 1)* — (d,)* < (m +
D® — m?. Since A(T°2m, m)) = m and T 2 T°Q2m + 1, m), then d(u) < m. If
d(u) = m, then [(m+1)* —m*]—[(d, +1)* —d] = 0. Otherwise, [(m+1)* —m*]—
[(dy + 1D —d¥]=a@E* ' =21y > 0, sinced, <n<d, +1<m<&<m+1
and o > lor o < 0.

Hence RY(T) < RU(T") < RY(T°(2m+1,m)) and then RY(T) < RU(T°2m+
1, m)) with equality holds if and only if 7 = 7°Q2m + 1, m). o
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The following two lemmas are obvious.

Lemma 3.4. Let 0 < « < 1 and T be any tree in T(2m + 1,m) (m > 1), then
Rg(T ) < R2(P2m+1) with equality holds if and only if T = Py, 1.

Lemma 3.5. Let 0 < o« < 1 and T be any tree in T(2m + 1, m)(m > 1), then
RU(T) > RUT°(2m+1, m)) with equality holds if and only if 7 = T°Q2m+1, m).

Let S = {v; € V(Cp)|d(v;) > 3}. For any v; € S, by T(v;) we denote the
connected component containing v; of the graph G — {v;_1v;, vjvi4+1}.

Lemma 3.6. Let G be a graph in Ui (2m, m), then, for each v; € S, we have that
T (v;) belongs either to T'(n;, %) or to T(n;, ""T_l).

Proof. Since G € Uy (2m, m), there exists a perfect matching M of G such that
every vertex in G is saturated by M.

For each v; € S, let M = M (| E(T (v;)), then M’ is also an matching of
T (v;).

If v;_jv; € M or v;v;1] € M, then v; is not saturated by M’, but all other
vertices in T'(v;) — {v;} are saturated by M’ since G € Ux(2m, m). So T(v;) €

T(n;, ).
If vi_jv; € M and vjv;y; € M, then v; is saturated by M’ as well as all
other vertices in T (v;) — {v;}, so T(v;) € T(n;, 7). o

For any G € Ux(2m, m), the following several lemmas will give necessary
conditions on which Rg (G) attains extremal values.

Lemma 3.7. Let @ > 1 or « < 0 and G be a graph in Ui (2m, m) such that RS(G)
is as small as possible, then T'(v;) = P,, for each v; € S where n; = n(T(v;)).
Moreover, v; is one pendent vertex of P;.

Proof. Let G be a graph in Uy (2m, m) such that RY(G) is as small as possible
and v; a vertex in S. Let v;_; and v;;| denote the two neighbors of v; along
the cycle Cr. We write A = [dy, — (dy; — 2] + [dl‘j‘l_+1 — (dy,,, — DT+ [dg,q —
(dy;_, — D*]. Let G| denote the connected component not containing v; of the
graph G — {v;_1v;, v;v;y1}. Then Rg(G) = Rg(Gl) + A+ Rg(T(vi)). By lemma

3.6, T(v;) belongs either to T'(n;, 3) or to T'(n;, ’”2—_1). In either cases, we have
RY(G) > RS(G1) + A + RY(Py)

by theorem 2.3 and lemma 3.2. Moreover, the above equality holds if and only
if T(v;)) = P,,.

In the following, we will show that v; is one pendent vertex of P,,, that is
d(v;) = 3. Assume that d(v;) # 3, then d(v;) =4 since T (v;)) = Py,. Let N(v;) —



H. Hua et al | Zeroth-order general Randi¢ index 743

{vi_1, vix1} = {x, y} and M be a perfect matching of G. Then there were at least
one of two edges v;x and v;y which does not belong to M. Without loss of gen-
erality, we assume that v;x ¢ M. Let P(y) = y1...yp(p = 2) denote the path
with y; = y as one of its pendent vertex.

Set G’ = G —vix + ypx, then G’ € Ux(2m, m) and

RYUG") — RY(G) = 2% — 1) — (4% — 39).

Since a« > 1 or ¢ < 0, we have Rg(G’ ) < Rg (G), contradicting the choice
of G. Consequently, the desired result follows. m]

Lemma 3.8. Let o« >1 or a <0 and G be a graph in U;(2m,m) such that

Rg(G) is as great as possible, then for each v; € S, we have T(v;) =
TO(ni,’%) or T(v;) = To(n,, ni=ly  Moreover, if T(v;) = To(n,-,%), then
d(vi) —2 = ATn;, %)); if T(v,)_TO(n,, "‘2_1), then v; is one pendent vertex

of T9(n;, "iz_l) which is adjacent to the maximum-degree vertex of 7°%(n;, ”"2_1).

Proof. Let G be a graph in Ug(2m, m) such that RS(G) is large enough. Let v;
be a vertex in S. Let v;_; and v;4; denote the two neighbors of v; along the
cycle Cr. We write A = [dy, — (dy;, — 2)*] + [d3+1 (dy .y, — D*] + [all‘j‘i_1 —
(dy, ;, — D*]. Let G; denote the connected component not containing v; of the
graph G — {v;_1v;, v;iv;y1}. Then RY(G) = RY(G) + A + RY(T (v;)). Combining
theorem 2.3, lemmas 3.3 and 3.6, we obtain

RYG) < RUG)+ A+ R (TO (”i’ %))

if n; is even or

R%G) < RY(G1)+ A+ R (TO( "2_ 1))

if n; is odd.

The above two equalities hold if and only if 7 (v;) = T°(n;, 5) and T (v;) =
To(n,, n=ly respectively.

In the following, we will show that (i) if 7'(v;) =T n;, %), then d(v;) —
2 = A(To(nl, 7))@ 1f T (v;) ~ 70n,, "12_1), then v; is one pendent vertex of
7%n;, ”’ ) which is adjacent to the maximum-degree vertex of T°(n;, % > 1).

Flrst we show (i) holds.

Suppose that d(v;) —2 < AT (n;, ).

Let u be a vertex in T (v;) such that d(u) = AT (n;, %)) and G’ denote
the graph obtained by replacing two edges v;_jv; and v;yjv; of G by v;_ju and
viyu. Then G’ € Up(2m, m) and

R%G") — RYU(G) = [(dy +2)* —d*] — [d* — (dy — 2)°].
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If d, > d,, then

RUG") — RY(G) = [(dy + 2)% — d*] — [d* — (dy — 2)*]
= [(dy + 2)% — d%] — [d — (dy — 2)*]
= (dy +2 —dp)aE ! —noh,

where dy, — 2 < n < d, < dy <& < d,+2 Sincewa > 1 or a < 0, then
Rg(G/ ) > Rg (G), contradicting the choice of G.
If d, < d,, then

RUG") — RY(G) = [(dy + 2)% — d*] — [d* — (dy — 2)]
=2a(5 " =57,

where dy —2 < my < d, < d, < & < d, +2.Since a > 1 or « < 0, then
Rg(G’) > Rg(G), a contradiction to the maximality of Rg(G) once again. So
the desired result holds.

To show (ii) holds, we need only to prove that d(v;) =3 and d(u) = A(T (v;)),
where u = N (v;) — {vi—1, Vit+1}-

Since T(v;) = T%(n;, ") and G € Ux(2m, m), then d(v;) — 2 < AT (n;,
ni-1y). Note that for any vertex w € T%(n;, “iyb), if d(w) < AT (n;, M),
then d(w) =1 or d(w) = 2.

If d(v;)—2 = 2, there must exist a vertex in 7°(n;, ’”2;1) such that it can not
be saturated by some maximal matching M of G, a contradiction. So d(v;)—2 =
1, that is d(v;) = 3.

If dw) < A(T(n;, ""_1)), then we still have a vertex in T%(n;, %) such

2
that it can’t be saturated by some maximal matching M of G, a contradiction
once again.
Therefore the proof is completed. m]

The following two lemmas can be obtained easily, so we omitted their
proofs here.

Lemma 3.9. Let 0 < @« < 1 and G be a graph in Uy (2m, m) such that RS(G)
is as large as possible, then T'(v;) = P, for each v; € S where n; = n(T (v;)).
Moreover, v; 1s one pendent vertex of Py, .

Lemma 3.10. Let 0 <@ < 1 and G be a graph in Ui (2m, m) such that Rg(G) is
as small as possible, then for each v; € S, we have T (v;) = T%(n;, %) or T(v;) =
T%(n;, “1). Moreover, if T(v;) = T%(n;, ), then d(v;) — 2 = AT (n;, %)); if

T(v) ZT%n;, ”"T_l), then v; is one pendent vertex of 7°(n;, 2_1) which is adja-
cent to the maximum-degree vertex of 7°(n;, i~ b.
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The following theorem will give a sharp lower bound for R%(G) among all
conjugated unicyclic graphs in U (2m, m).

Theorem 3.11. Let G be a graph in Uy (2m, m) and o > 1 or @ <0, then R2(G) >
14+3%+(2m—2)2% with equality holds if and only if G = (Cg, v;) b<t (Pym—k+1, Vi),
where v; is any vertex of Cy and one pendent vertex of P, 41, respectively.

Proof. Let G be a graph in U (2m,m) with R%(G) taking the smallest value.
Then by lemma 3.7, T (v;;) = Pn; for each v;; € S, where n;; = n(T (v;;)).

If |S| =1, then the result holds. Now assume that [S| > 2. _

Since T'(vjj) = Py; (j = 1,...18]), we denote T (v;j) = xéj)x{” . .xt(]t’) (t;>1),
where x{” = v;;(j = 1,...|S)).

Set G — G — x@ 1(2) x®x® L 88

X0
((NERY) (ISI)
fs1-1) X1
ObV1ous1y, G’ € Uy(2m, m) and

+ x,(ll) @ + x,(zz)xl(3) +---+

RY(G") = RY(G) = (IS| = Q2% = 3%) + (IS| = HQ2* — D).

For @ > 1 or « < 0, we have R2(G/ )<R2(G), which contradicting the mini-
mality of RS(G). So |S| =1 and the proof is completed. ]

The next theorem follows readily from the proof theorem 3.11 and lemma
3.9.

Theorem 3.12. Let G be a graph in Uy(2m,m) and 0 < o < 1, then Rg(G) <
1434+ (2m—2)2% with equality holds if and only if G = (Cy, v;) ><t (Pym—i+1, Vi),
where v; is any vertex of Cx and one pendent vertex of Py,_j1, respectively.

Lemma 3.13. Let f(x) = (x + 2)¥ + x* — 2(x 4+ 1)* be defined in the interval
[1, 400), then f(x) is a monotonically increasing function in [I, +00) where o
is a constant greater than 2.

Proof. Note that f(x) =[(x +2)% — (x + D¥] — [(x + 1)* — x“], then

dﬁi) ol +2%7 = e+ DT = el + DO = x
=al—DE? =0,

where | <x <n<x+1<&<x+42.
When o > 2, we have % > 0. This implies the desired result. o

In the following, we will give a sharp upper bound for RS(G) among all
conjugated unicyclic in Uy (2m, m).
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Theorem 3.14. Suppose G is a graph in Uix(2m,m) and @ > 2, we have the fol-
lowing

(i) If 2m =k + 2, then RY(G) < 2 + (k — 2)2% 4 3% with equality holding
if and only if G 2 (Ck, P3).

(i) If 2m >k + 3 and & is odd, then RY(G) < (m — 551y + (m + 552)2 +
(m — %52) with equality holds if and only if G = (C, v;) < (T°(2m —
k41, 2220 ). Moreover, dy, —2 = AT (2m —k+1, 225550y ).

(iii) If 2m > k+3 and k is even, then RY(G) < (m—5)+(m+5—-2)29 43+
(m+1-— %)“ with equality holds if and only if G = (Cy, v;) < (T°(2m —
k+1, Z’"T_k), v;). Moreover , d(v;) = 3 and u is the maximum-degree
vertex of (T°Q2m —k + 1, 2’”2_]‘), v;) where u = N(v;) — {v;_1, vi_1}.

Proof. Let G be a graph in Uz (2m, m) with Rg(G) taking the maximum cardi-
nality. It follows from lemma 3.8 that T'(v;) = T%(n;, ”igl) or T(v;)) Z T%n;, %)
for each v; € S.

If |S| = 1, then we must have 2m # k+2. If 2m = k+ 2, then G = (Cy, P3)
since G € Ug(2m, m). By theorem 3.11, we have Rg(G) = Rg((Ck, P3)) < RS(G/)
for any G’ # (Cy, P3), contradicting the choice of G. So, 2m > k + 3. By lemma
3.8, (ii) or (iii) holds.

Suppose |S| > 2, we consider the following several cases:

Case 1. 2m =k + 2.

In this case, we can easily see that for any two graphs G; and G; in
Ux(2m, m), G| 2 (Ck, P3) and G, % (Cy, P3). Moreover, RY(G|) = R%(G»). Fur-
thermore, by theorem 3.11, we have Rg(G) > Rg((Ck, P3)) if G % (Cg, P3), so
(1) holds.

Case 2. 2m > k + 3.

We distinguish the following subcases:

For any vertex v;; € S, j = 1,...|S|,we will denote n(7T (v;;)) by n; herein-
after.

Subcase 2.1. n; =2 for each vi; €S.

Let V(G) — V(Ck) = {x1,...x5} and N(x;) = v;;, j = 1,...[S]. Let
N(vij) - {x]} = {vij—l’ vij+l}7.j = 1’ v |S|

In this case, |S| > 3.

If |S|=3,let G' =G — Vj, X2 — Vi3 X3 + Vi X2 + X2X3; If |S| >4, let G =G —
Vin X2 = Vj3X3 = Viy—1Viy —Vip Vip 41— Vi3 Viz4+1 T Viy— 1 Vi1 FVip Viz +Viy Vig 1 + Vi X2 +X2X3.
In either cases, we have G’ € Uy (2m, m) and

RY(G") — RY(G) = (4% — 3%) + (2% — 1) —2(3% —29)
= (4% +2% —2.3%) — (3% +1—12.2%).
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Since a > 2, then Rg(G’ ) > RS(G) by lemma 3.13, a contradiction to the
choice of G.
Subcase 2.2. There exists some v; € S such that n; = 3.

Since |S| > 2, there exists at least one vertex v;, in § — {v;,}.

Set G’ = G — vj;,;x; + v;,x;, then G" € Ux(2m, m) and

RY(G') — RY(G) = [(dy, + D* —df 1 — (3% —2%.

Since d,,;, > 3 and @ > 2, then Rg (G > Rg(G), a contradiction once again.
Subcase 2.3. For any vertex Vi inS,n; >4

The following two subcases should be considered:
Subcase 2.3.1. There exists some v;, € S such that d(v;) = A(G).

Since |S| > 2, there exists some vertex v;, in S — {v;}. By lemmas 3.6,
2.1, and 3.1, there exists a pair of adjacent vertices x; and y,; in T (v;,) such that
d(x;) =2 and d(y;) = 1. Let N(x;) — {y} = {z:}.

Set G’ = G — z;x; + v;;x;, then G' € Ux(2m, m) and

Ry(G') = RY(G) = [(dy, + 1) —dj; 1 = [d% — (dz; = D*I = E*~ =" 1) > 0.

Since d;, — 1 <n <d;, <d(v;,) <d(v,) <& <d(v;)+1 and « > 2. This
contradicts the maximality of R%(G).

Subcase 2.3.2. For any vertex v;; € S, d(vi;) < A(G). Let u be a vertex in G
such that d(u) = A(G), then u € T (v;) for some positive integer /.

Since |S|> 2, there exists some vertex v;, in S — {v;}. By lemmas 3.6, 2.1,
and 3.1, there exists a pair of adjacent vertices x; and y; in T(v;) such that
d(x;) =2 and d(y;) = 1. Let N(x;) — {y:} = {z:}.

The left thing we have to do is completely similar to that has been done in
subcase 2.3.1, and then an analogous contradiction occurs once again.

From the above argument, the desired result follows. O

For each v; € S, if n(T (v;)) > 3, we have the following theorems.

Theorem 3.15. Suppose G is a graph in Ug(2m, m) and a>1 or a<0. If n(T (v;)) >
3 for each v; € S, then

(DIf k is odd, then RY(G) < (m—*51)+(m+%52)2% +(m—*52)% with equal-
ity holds if and only if G = (Ck, v)) >t (T72m — k + 1, 2255EL) '), Moreover,
d(v) —2 = A(T°2m — k + 1, 2250 o).

(i) If k is even, then Rg(G) < (m—%)+(m+§—2)2“+3“+(m+1—§)°‘ with
equality holds if and only if G = (Cy, v;) 0= (T°Qm — k + 1, #), v;). More-
over, d(v;) = 3 and u is the maximum-degree vertex of (T9Q2m —k+1, @), v;)
where u = N (v;) — {vi—1, vi+1}.

From the proof of theorem 3.14, theorem 3.15 is then obvious.
Similarly, we have the following:



748 H. Hua et al. | Zeroth-order general Randi¢ index

Theorem 3.16. Suppose G is a graph in Uy(2m, m) and 0 < o < 1. If n(T (v;)) >
3 for each v; € S, then

(i) If k is odd, then RY(G) > (m — 51) + (m + 552)2% + (m — 52)* with
equality holds if and only if G = (Cy, v;) < (T°Qm —k + 1, %), v;). More-
over, d(v;) —2 = A(T°Q2m — k + 1, 22=kt1y 4)y).

(ii)If k is even, then RY(G) > (m — %) +(m+5-2)2943% + (m+1-%5)* with
equality holds if and only if G = (Cy, v;) 0= (T°Q2m — k + 1, 2’"T_k), v;). More-
over, d(v;) = 3 and u is the maximum-degree vertex of (7°Q2m —k+1, 2’"2—_"), v;)
where u = N(v;) — {vi_1, vi+1}.
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